2 resultados para Alginate gel microparticles, ibuprofen, gentamicin sulphate, drug release, activity, S. epidermidis, C. albicans

em Digital Repository at Iowa State University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eighteenth annual biochemical engineering symposium was held during April 22–23, 1988 at the YMCA of the Rockies conference center in Estes Park, Colorado, under the sponsorship of the University of Colorado. Previous symposia in this series have been hosted by Kansas State University (1st, 3rd, 5th, 9th, 12th, 16th), University of Nebraska-Lincoln (2nd, 4th), Iowa State University (6th, 7th, l0th, 13th, 17th), University of Missouri–Columbia (8th, 14th), and Colorado State University (11th, 15th). Next year's symposium is scheduled to be held at the University of Missouri-Columbia. The symposia are devoted to talks by students about their ongoing research. Because final publication usually takes place elsewhere, the papers included in the proceedings are brief, and often cover work in progress. ContentsApplications of mass spectrometers in biochemical engineeringJohn P. McDonald, Ayush Gupta, and Lourdes Taladriz, Kansas State University Enzymatic hydrolysis of corn gluten proteinsJulie Hardwick; Iowa State University Improved Acetone-Butanol Fermentation AnalysisZ. Buday; Colorado State University On-Line State Identification for Batch FermentationD. A. Gee and W. F. Ramirez; University of Colorado Role of Spargers in Air-Lift ReactorsPeter U. Sohn and Rakesh K. Bajpai; University of Missouri–Columbia The Interaction of Microcarriers and Turbulence within an Airlift FermenterG. Travis Jones; Kansas State University Oxygen Diffusion in the Inter-Fiber Gel/Cell Matrix of NMR-Compatible Hollow Fiber Bio-ReactorsS. L. Hanson, B. E. Dale, and R. J. Gillies; Colorado State University Characterization of Ca-alginate Gel Beads FormationHorngtwu Su, Rakesh K. Bajpai, and George W. Preckshot; University of Missouri–Columbia Metabolic Effects of Chloramphenicol Resistance in the Recombinant Host/Vector System: E. coli RRl [pBR329]William E. Bentley, Dana C. Andersen, Dhinakar S. Kompala, and Robert H. Davis; University of Colorado Genetic Engineering of Beta-Galactosidase to Aid in Fermentation Product Recovery by Polyelectrolyte PrecipitationD. E. Parker, C. E. Glatz, J. Zhao, C. F. Ford, S. M. Gendel, and M. A. Rougvie; Iowa State University Biodegradation of Organic Compounds in SoilLourdes Taladriz, L. E. Erickson, and L. T. Fan; Kansas State University Effect of Dilution, pH and Nutrient Composition on the Biodegradation of Metalworking FluidsAyush Gupta, L. E. Erickson, and L. T. Fan; Kansas State University Dissolved Hydrogen Correlation with Redox Potential in Acetone-Butanol FermentationXiangdong Zhou; Colorado State University Modeling of Ensiling Fermentation of Sweet SorghumA. K. Hilaly; Colorado State University

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothalamus in the lower part of the brain contains neurons that produce a small peptide, gonadotropin- releasing hormone (GnRH, LHRH), that regulates luteinizing hormone (LH) secretion by the anterior pituitary gland. Important functions of LH include induction of ovulation in preovulatory follicles during estrus and the luteinization of granulosa cells lining those collapsed follicles to form corpora lutea that produce progesterone during the luteal phase of the estrous cycle or during pregnancy. The production of progesterone by the corpus luteum conveys a negative feed-back action at the central nervous system (CNS) for further episodic secretion of GnRH and in turn, LH secretion. Gonadal removal (i.e., ovariectomy) allows a greater amount of LH secretion to occur during a prolonged period. The objectives of this study were to characterize the pattern of GnRH secretion in the cerebrospinal fluid (CSF) of the bovine third ventricle region of the hypothalamus, determine its correspondence with the tonic and surge release of LH in ovariectomized cows, and examine the dynamics of GnRH pulse release activity in response to known modulators of LH release (suckling, neuropeptide-Y [NPY]). In ovariectomized cows, both tonic release patterns and estradiol-induced surges of GnRH and LH were highly correlated. A 500-microgram dose of NPY caused an immediate cessation of LH pulses and decreased plasma concentrations of LH for at least 4 hours. This corresponded with a decrease in both GnRH pulse amplitude and frequency. In anestrous cows, GnRH pulse frequency did not change before and 48 to 54 hours after weaning on day 18 postpartum, but GnRH concentration and amplitudes of GnRH pulses increased in association with weaning and heightened secretion of LH. It is clear that high-frequency, highamplitude pulses of LH are accompanied by similar patterns of GnRH in CSF of adult cattle. Yet strong inhibitors of LH pulsatility, putatively acting at the level of the central nervous system (i.e., suckling) or at both the central nervous system and pituitary (NPY) levels, produced periods of discordance between GnRH and LH pulses.